Lecture 36

PM in Bipartite Graphs, Error Reduction

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

Example:

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

Example:

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

Example:

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

Example:

perfect matching exists

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

Example:

perfect matching exists

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether

there exist a perfect matching in G.

Example:

perfect matching exists

perfect matching does not exist

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

A PM is a permutation from [n] to [n]

PM Problem: Given a bipartite graph G = (V, E) with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

A PM is a permutation from [n] to [n]PM on the left is a 2143 permutation.

For a bipartite graph G = (V, E) with equal partitions of size n,

For a bipartite graph G = (V, E) with equal partitions of size n, let X be an $n \times n$ matrix of integer

For a bipartite graph G = (V, E) with equal partitions of size n, let X be an $n \times n$ matrix of integer

variables whose (i, j)th entry $X_{i,j}$

For a bipartite graph G = (V, E) with equal partitions of size n, let X be an $n \times n$ matrix of integer

variables whose (i, j)th entry $X_{i, j}$ is equal to variable $x_{i, i}$ if $(i, j) \in E$

For a bipartite graph G = (V, E) with equal partitions of size n, let X be an $n \times n$ matrix of integer

variables whose (i, j)th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

For a bipartite graph G = (V, E) with equal partitions of size n, let X be an $n \times n$ matrix of integer

Example:

variables whose (i, j)th entry $X_{i,j}$ is equal to variable $x_{i,j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

For a bipartite graph G = (V, E) with equal partitions of size n, let X be an $n \times n$ matrix of integer

variables whose (i, j)th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

$$X = \begin{bmatrix} x_{11} & x_{12} & 0 & 0 \\ x_{21} & 0 & x_{23} & 0 \\ 0 & x_{32} & 0 & x_{34} \\ x_{41} & 0 & x_{43} & 0 \end{bmatrix}$$

Example:

Example:

Observation:

Example:

Observation: G has a perfect matching iff X has $n x_{ii}$ entries such that in every row and column

Example:

Observation: G has a perfect matching iff X has $n x_{ii}$ entries such that in every row and column there is exactly one of the *n* entries.

Determinant of a 2×2 matrix

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

 $X_{21}X_{12}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

 $X_{21}X_{12}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}$$

 $X_{21}X_{12}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} = X_{11}X_{22} + X_{11}X_{22}$$

 $X_{21}X_{12}$

 $X_{33} - X_{11}X_{23}X_{32} - X_{12}X_{21}X_{33} + X_{12}X_{23}X_{31}$ $X_{13}X_{21}X_{32} - X_{13}X_{22}X_{31}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} = X_{11}X_{22} + X_{11}X_{22}$$

$X_{21}X_{12}$

Every summand contains n entries such that every row and column contains exactly one entry.

 $_{2}X_{33} - X_{11}X_{23}X_{32} - X_{12}X_{21}X_{33} + X_{12}X_{23}X_{31}$ $X_{21}X_{32} - X_{13}X_{22}X_{31}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} = X_{11}X_{22} + X_{11}X_{22}$$

 $_{2}X_{33} - X_{11}X_{23}X_{32} - X_{12}X_{21}X_{33} + X_{12}X_{23}X_{31}$ $_{13}X_{21}X_{32} - X_{13}X_{22}X_{31}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} = X_{11}X_{22} + X_{11}X_{23}$$

 $_{3}X_{21}X_{32} - X_{13}X_{22}X_{31}$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} = X_{11}X_{22} + X_{11}X_{23}$$

Determinant of a 2×2 matrix

$$\begin{bmatrix} X_{11} & X_{12} \\ & & \\ X_{21} & X_{22} \end{bmatrix} = X_{11}X_{22} - X_{22}$$

Determinant of a 3×3 matrix

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} = X_{11}X_{22} + X_{11}X_{23}$$

The determinant of an $n \times n$ matrix X is defined as:

The determinant of an $n \times n$ matrix X is defined as:

 $det(X) = \sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} \prod_{i=1}^n X_i, \sigma(i)$

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} \left(-1\right)$$

where S_n is the set of all permutations of [n]

 $(S_{i=1}^{sgn(\sigma)} \prod_{i=1}^{n} X_{i}, \sigma(i))$

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} \left(-1\right)$$

- $(S)^{sgn(\sigma)} \prod_{i=1}^{n} X_i, \sigma(i)$
- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} (-1)$$

in σ such that i < j and but $\sigma(i) > \sigma(j)$.

- $(x)^{sgn(\sigma)} \prod_{i=1}^{n} X_i, \sigma(i)$
- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} (-1)$$

in σ such that i < j and but $\sigma(i) > \sigma(j)$.

Observation:

- $(x)^{sgn(\sigma)} \prod_{i=1}^{n} X_i, \sigma(i)$
- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} \left(-1\right)$$

in σ such that i < j and but $\sigma(i) > \sigma(j)$.

- $(x)^{sgn(\sigma)} \prod_{i=1}^{n} X_i, \sigma(i)$
- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

Observation: Previously defined X has $n x_{ij}$ entries such that in every row and column there is

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} (-1)$$

in σ such that i < j and but $\sigma(i) > \sigma(j)$.

exactly one of the *n* entries iff det(X) is a non-zero polynomial.

- $\sum_{i=1}^{sgn(\sigma)} \prod_{i=1}^{n} X_{i}, \sigma(i)$
- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

Observation: Previously defined X has $n x_{ij}$ entries such that in every row and column there is

The determinant of an $n \times n$ matrix X is defined as:

$$det(X) = \sum_{\sigma \in S_n} (-1)$$

in σ such that i < j and but $\sigma(i) > \sigma(j)$.

exactly one of the *n* entries iff det(X) is a non-zero polynomial.

Corollary:

- $\sum_{i=1}^{sgn(\sigma)} \prod_{i=1}^{n} X_{i}, \sigma(i)$
- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

Observation: Previously defined X has $n x_{ij}$ entries such that in every row and column there is

The determinant of an $n \times n$ matrix X is defined as:

 $det(X) = \sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} \prod_{i=1}^n X_i, \sigma(i)$

in σ such that i < j and but $\sigma(i) > \sigma(j)$.

exactly one of the *n* entries iff det(X) is a non-zero polynomial.

Corollary: G has a perfect matching iff det(X) is a non-zero polynomial.

- where S_n is the set of all permutations of [n] and $sgn(\sigma)$ is the parity of the number of pairs (i, j)

- **Observation:** Previously defined X has $n x_{ij}$ entries such that in every row and column there is

Chernoff's Bound: Let $X_1, X_2, ..., X_k$ be independent random variables,

Chernoff's Bound: Let X_1, X_2, \dots, X_k be independent random variables, where $\Pr[X_i = 1]$ is p and

$\Pr[X_i = 0]$ is 1 - p.

Chernoff's Bound: Let X_1, X_2, \dots, X_k be independent random variables, where $\Pr[X_i = 1]$ is p and

$\Pr[X_i = 0]$ is 1 - p. Then, for $\delta \in (0,1)$,

Chernoff's Bound: Let X_1, X_2, \dots, X_k be independent random variables, where $\Pr[X_i = 1]$ is p and

Chernoff's Bound: Let $X_1, X_2, ..., X_k$ be independent random variables, where $\Pr[X_i = 1]$ is p and $\Pr[X_i = 0]$ is 1 - p. Then, for $\delta \in (0,1)$,

$$\Pr\left[\left|\frac{\sum_{i\in[k]}X_i}{k}-p\right|>$$

Chernoff's Bound: Let X_1, X_2, \dots, X_k be independent random variables, where $\Pr[X_i = 1]$ is p and $\Pr[X_i = 0]$ is 1 - p. Then, for $\delta \in (0,1)$,

$$\Pr\left[\left|\frac{\sum_{i\in[k]}X_i}{k}-p\right|>$$

Chernoff's Bound: Let X_1, X_2, \dots, X_k be independent random variables, where $\Pr[X_i = 1]$ is p and $\Pr[X_i = 0]$ is 1 - p. Then, for $\delta \in (0,1)$,

$$\Pr\left[\left|\frac{\sum_{i\in[k]}X_i}{k}-p\right|>$$

Definition: For c > 1, a language L is in $\operatorname{\mathsf{BPP}}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in \{0,1\}^*$,

Definition: For c > 1, a language L is in $\text{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in \{0,1\}^*$, $x \in L \implies M \text{ accepts } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$

Definition: For c > 1, a language L is in $\mathsf{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in \{0,1\}^*$, $x \in L \implies M \text{ accepts } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$ $x \notin L \implies M \text{ rejects } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$

Definition: For c > 1, a language L is in $\mathsf{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in \{0,1\}^*$, $x \in L \implies M \text{ accepts } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$ $x \notin L \implies M \text{ rejects } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$

Theorem: Let $L \in \mathsf{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that

Definition: For c > 1, a language L is in $\text{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in \{0,1\}^*$, $x \in L \implies M \text{ accepts } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$ $x \notin L \implies M \text{ rejects } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

Definition: For c > 1, a language L is in $\text{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in \{0,1\}^*$, $x \in L \implies M \text{ accepts } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$ $x \notin L \implies M \text{ rejects } x \text{ with probability} \ge \frac{1}{2} + \frac{1}{(|x|)^c}.$

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

Corollary: $BPP_{\frac{1}{2}+} = BPP_{\frac{1}{2}+}$

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

Proof:

Theorem: Let $L \in \mathsf{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$. **Proof:** Let *M* be *L*'s $BPP_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

Theorem: Let $L \in \mathsf{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s $BPP_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

Theorem: Let $L \in \mathsf{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s $BPP_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x: 1) Runs M on x, k times.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s $BPP_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x: 1) Runs M on x, k times. 2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s $BPP_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of $(y_1, y_2, ..., y_k)$.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s $BPP_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of (y_1, y_2, \dots, y_k) .

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s BPP_{$\frac{1}{2}+$} machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of (y_1, y_2, \dots, y_k) .

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s BPP_{$\frac{1}{2}+$} machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|r|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$. $\forall i \in [k], let X_i$ be the random variable:

decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of (y_1, y_2, \dots, y_k) .

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that **Proof:** Let *M* be *L*'s BPP_{$\frac{1}{2}+$} machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|x|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$. $\forall i \in [k], let X_i$ be the random variable: - $X_i = 1$, if y_i is the right answer.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of $(y_1, y_2, ..., y_k)$.

Proof: Let *M* be *L*'s BPP_{$\frac{1}{2}+$} machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|r|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

 $\forall i \in [k], let X_i$ be the random variable: - $X_i = 1$, if y_i is the right answer. - $X_i = 0$, otherwise.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of (y_1, y_2, \dots, y_k) .

Fix $k = 8n^{d+2c}$.

Proof: Let *M* be *L*'s BPP_{$\frac{1}{2}+$} machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|r|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

 $\forall i \in [k], let X_i$ be the random variable: - $X_i = 1$, if y_i is the right answer. $-X_i = 0$, otherwise.

Theorem: Let $L \in \text{BPP}_{\frac{1}{2}+}$. Then, for every constant d > 1, there exists a polytime PTM that decides L and gives the right answer with probability at least $1 - \frac{1}{2(|x|)^d}$.

M' on input x:

1) Runs M on x, k times.

2) Let (y_1, y_2, \dots, y_k) be the outputs of runs.

3) Outputs the majority of (y_1, y_2, \dots, y_k) .

Fix $k = 8n^{d+2c}$.

Proof: Let *M* be *L*'s BPP_{$\frac{1}{2}+$} machine that gives right answer with probability $\geq \frac{1}{2} + \frac{1}{(|r|)^c}$. We will construct a PTM M' that decides L with right answer's probability $\geq 1 - \frac{1}{2(|x|)^d}$.

 $\forall i \in [k], let X_i$ be the random variable: - $X_i = 1$, if y_i is the right answer. - $X_i = 0$, otherwise.

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0, 1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

Pr [M' gives the wrong answer]

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

Pr [M' gives the wrong answer] = **Pr** [$\sum_{i \in [k]} X_i < k/2$]

$$\frac{\in [k]}{k} \frac{X_i}{k} - p \right| > \delta \right| \qquad < \qquad e^{\frac{-\delta^2 p k}{4}}$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

$$\Sigma_{i \in [k]} X_i < k/2] = \Pr\left[p - \frac{\Sigma X_i}{k} > p - \frac{1}{2}\right]$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0, 1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

Pr [M' gives the wrong answer] = **Pr** [Σ

 $\leq \mathbf{Pr} ||_{\mathcal{I}}$

$$\frac{\left|\sum_{k=1}^{N} X_{i}\right|}{k} - p > \delta < e^{\frac{-\delta^{2} p k}{4}}$$

$$\begin{split} \Sigma_{i \in [k]} X_i &< k/2 \end{bmatrix} &= \Pr\left[p - \frac{\Sigma X_i}{k} > p - \frac{1}{2} \right] \\ p - \frac{\Sigma X_i}{k} &> \frac{1}{n^c} \end{split}$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

$$\sum_{i \in [k]} X_i < k/2] = \Pr\left[p - \frac{\sum X_i}{k} > p - \frac{1}{2}\right]$$

$$p - \frac{\sum X_i}{k} > \frac{1}{n^c}$$
$$\frac{1}{n^c} \cdot \left(\frac{1}{2} + \frac{1}{n^c}\right) \cdot \left(8n^{d+2c}\right)$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0, 1),$ $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0, 1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

$$\Sigma_{i \in [k]} X_i < k/2] = \Pr\left[p - \frac{\Sigma X_i}{k} > p - \frac{1}{2}\right]$$

$$\left| p - \frac{\sum X_i}{k} \right| > \frac{1}{n^c}$$

$$\frac{1}{n^{2c}} \cdot \left(\frac{1}{2} + \frac{1}{n^c} \right) \cdot \left(8n^{d+2c} \right)$$

$$\left(1 + \frac{2}{n^c} \right)$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

$$\Sigma_{i \in [k]} X_i < k/2] = \Pr\left[p - \frac{\Sigma X_i}{k} > p - \frac{1}{2}\right]$$

$$\leq \mathbf{Pr} \left[\left| p - \frac{\Sigma X_i}{k} \right| > \frac{1}{n^c} \right]$$

$$\frac{1}{n^{2c}}\right) \cdot \left(\frac{1}{2} + \frac{1}{n^{c}}\right) \cdot \left(8n^{d+2c}\right)$$

$$\left(1+\frac{2}{n^{c}}\right) \leq e^{-n^{d}}$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

$$\Sigma_{i \in [k]} X_i < k/2] = \Pr\left[p - \frac{\Sigma X_i}{k} > p - \frac{1}{2}\right]$$

$$\left| p - \frac{\Sigma X_i}{k} \right| > \frac{1}{n^c}$$

$$\frac{1}{n^{2c}}\right) \cdot \left(\frac{1}{2} + \frac{1}{n^{c}}\right) \cdot \left(8n^{d+2c}\right)$$

$$\left(1+\frac{2}{n^c}\right) \leq e^{-n^d} \leq 2^{-n^d}$$

 $\mathsf{Pr}[X_i = 0] \text{ is } 1 - p. \text{ Then, for } \delta \in (0,1),$ $\mathsf{Pr}\left[\left|\frac{\sum_{i \in [k]} X_i}{k} - p\right| > \delta\right] < e^{\frac{-\delta^2 pk}{4}}$

$$\frac{\in [k]}{k} \frac{X_i}{k} - p > \delta < e^{\frac{-\delta^2 p k}{4}}$$

$$\Sigma_{i \in [k]} X_i < k/2] = \Pr\left[p - \frac{\Sigma X_i}{k} > p - \frac{1}{2}\right]$$

$$\left| p - \frac{\Sigma X_i}{k} \right| > \frac{1}{n^c}$$

$$\frac{1}{n^{2c}}\right) \cdot \left(\frac{1}{2} + \frac{1}{n^{c}}\right) \cdot \left(8n^{d+2c}\right)$$

$$\left(1+\frac{2}{n^c}\right) \leq e^{-n^d} \leq 2^{-n^d}$$