Lecture 36

PM in Bipartite Graphs, Error Reduction

Perfect Matching in Bipartite Graphs

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

perfect matching does not exist

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

perfect matching exists

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

$$
\text { APM is a permutation from }[n] \text { to }[n]
$$

perfect matching exists

Perfect Matching in Bipartite Graphs

PM Problem: Given a bipartite graph $G=(V, E)$ with equal size partitions, determine whether there exist a perfect matching in G.

Example:

APM is a permutation from $[n]$ to $[n]$
PM on the left is a 2143 permutation.
perfect matching exists

Perfect Matching in Bipartite Graphs

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n,

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & 0 & 0 \\
x_{21} & 0 & x_{23} & 0 \\
0 & x_{32} & 0 & x_{34} \\
x_{41} & 0 & x_{43} & 0
\end{array}\right]
$$

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & 0 & 0 \\
x_{21} & 0 & x_{23} & 0 \\
0 & x_{32} & 0 & x_{34} \\
x_{41} & 0 & x_{43} & 0
\end{array}\right]
$$

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & 0 & 0 \\
x_{21} & 0 & x_{23} & 0 \\
0 & x_{32} & 0 & x_{34} \\
x_{41} & 0 & x_{43} & 0
\end{array}\right]
$$

Observation:

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

Observation: G has a perfect matching iff X has $n x_{i j}$ entries such that in every row and column

Perfect Matching in Bipartite Graphs

For a bipartite graph $G=(V, E)$ with equal partitions of size n, let X be an $n \times n$ matrix of integer variables whose (i, j) th entry $X_{i, j}$ is equal to variable $x_{i, j}$ if $(i, j) \in E$, equal to 0 otherwise.

Example:

Observation: G has a perfect matching iff X has $n x_{i j}$ entries such that in every row and column there is exactly one of the n entries.

Perfect Matching in Bipartite Graphs

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix

$$
\left[\begin{array}{lll}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix

$$
\left[\begin{array}{ccc}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]=\begin{gathered}
X_{11} X_{22} X_{33}-X_{11} X_{23} X_{32}-X_{12} X_{21} X_{33}+X_{12} X_{23} X_{31} \\
+X_{13} X_{21} X_{32}-X_{13} X_{22} X_{31}
\end{gathered}
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix
Every summand contains n entries such that every row and column contains exactly one entry.

$$
\left[\begin{array}{ccc}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]=\begin{gathered}
X_{11} X_{22} X_{33}-X_{11} X_{23} X_{32}-X_{12} X_{21} X_{33}+X_{12} X_{23} X_{31} \\
+X_{13} X_{21} X_{32}-X_{13} X_{22} X_{31}
\end{gathered}
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix

Every summand contains n entries such that every row and column contains exactly one entry.

$$
\left[\begin{array}{ccc}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]=\begin{gathered}
X_{11} X_{22} X_{33}-X_{11} X_{23} X_{32}-X_{12} X_{21} X_{33}+X_{12} X_{23} X_{31} \\
+X_{13} X_{21} X_{32}-X_{13} X_{22} X_{31}
\end{gathered}
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix
Every summand contains n entries such that every row and column contains exactly one entry.

$$
\left[\begin{array}{ccc}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]=\begin{gathered}
X_{11} X_{22} X_{33}-X_{11} X_{23} X_{32}-X_{12} X_{21} X_{33}+X_{12} X_{23} X_{31} \\
+X_{13} X_{21} X_{32}-X_{13} X_{22} X_{31}
\end{gathered}
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix
Every summand contains n entries such that every row and column contains exactly one entry.

$$
\left[\begin{array}{ccc}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]=\begin{gathered}
X_{11} X_{22} X_{33}-X_{11} X_{23} X_{32}-X_{12} X_{21} X_{33}+X_{12} X_{23} X_{31} \\
+X_{13} X_{21} X_{32}-X_{13} X_{22} X_{31}
\end{gathered}
$$

Perfect Matching in Bipartite Graphs

Determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=X_{11} X_{22}-X_{21} X_{12}
$$

Determinant of a 3×3 matrix
Every summand contains n entries such that every row and column contains exactly one entry.

$$
\left[\begin{array}{ccc}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right]=\begin{gathered}
=X_{11} X_{22} X_{33}-X_{11} X_{23} X_{32}-X_{12} X_{21} X_{33}+X_{12} X_{23} X_{31} \\
+X_{13} X_{21} X_{32}-X_{13} X_{22} X_{31}
\end{gathered}
$$

Perfect Matching in Bipartite Graphs

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j)

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j) in σ such that $i<j$ and but $\sigma(i)>\sigma(j)$.

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j) in σ such that $i<j$ and but $\sigma(i)>\sigma(j)$.

Observation:

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j) in σ such that $i<j$ and but $\sigma(i)>\sigma(j)$.

Observation: Previously defined X has $n x_{i j}$ entries such that in every row and column there is

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j) in σ such that $i<j$ and but $\sigma(i)>\sigma(j)$.

Observation: Previously defined X has $n x_{i j}$ entries such that in every row and column there is exactly one of the n entries iff $\operatorname{det}(X)$ is a non-zero polynomial.

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j) in σ such that $i<j$ and but $\sigma(i)>\sigma(j)$.

Observation: Previously defined X has $n x_{i j}$ entries such that in every row and column there is exactly one of the n entries iff $\operatorname{det}(X)$ is a non-zero polynomial.

Corollary:

Perfect Matching in Bipartite Graphs

The determinant of an $n \times n$ matrix X is defined as:

$$
\operatorname{det}(X)=\Sigma_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \Pi_{i=1}^{n} X_{i}, \sigma(i)
$$

where S_{n} is the set of all permutations of $[n]$ and $\operatorname{sgn}(\sigma)$ is the parity of the number of pairs (i, j) in σ such that $i<j$ and but $\sigma(i)>\sigma(j)$.

Observation: Previously defined X has $n x_{i j}$ entries such that in every row and column there is exactly one of the n entries iff $\operatorname{det}(X)$ is a non-zero polynomial.

Corollary: G has a perfect matching iff $\operatorname{det}(X)$ is a non-zero polynomial.

Chernoff's Bound

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables,

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables, where $\operatorname{Pr}\left[X_{i}=1\right]$ is p and

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables, where $\operatorname{Pr}\left[X_{i}=1\right]$ is p and $\operatorname{Pr}\left[X_{i}=0\right]$ is $1-p$.

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables, where $\operatorname{Pr}\left[X_{i}=1\right]$ is p and $\operatorname{Pr}\left[X_{i}=0\right]$ is $1-p$. Then, for $\delta \in(0,1)$,

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables, where $\operatorname{Pr}\left[X_{i}=1\right]$ is p and $\operatorname{Pr}\left[X_{i}=0\right]$ is $1-p$. Then, for $\delta \in(0,1)$,

$$
\operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]
$$

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables, where $\operatorname{Pr}\left[X_{i}=1\right]$ is p and $\operatorname{Pr}\left[X_{i}=0\right]$ is $1-p$. Then, for $\delta \in(0,1)$,

$$
\operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<
$$

Chernoff's Bound

Chernoff's Bound: Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables, where $\operatorname{Pr}\left[X_{i}=1\right]$ is p and $\operatorname{Pr}\left[X_{i}=0\right]$ is $1-p$. Then, for $\delta \in(0,1)$,

$$
\operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}
$$

Reducing the Error Rate in BPP

Reducing the Error Rate in BPP

Definition: For $c>1$, a language L is in $\operatorname{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in\{0,1\}^{*}$,

Reducing the Error Rate in BPP

Definition: For $c>1$, a language L is in $\operatorname{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in\{0,1\}^{*}$, $x \in L \Longrightarrow M$ accepts x with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.

Reducing the Error Rate in BPP

Definition: For $c>1$, a language L is in $\operatorname{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in\{0,1\}^{*}$,

$$
\begin{aligned}
& x \in L \Longrightarrow M \text { accepts } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} . \\
& x \notin L \Longrightarrow M \text { rejects } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} .
\end{aligned}
$$

Reducing the Error Rate in BPP

Definition: For $c>1$, a language L is in $\operatorname{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in\{0,1\}^{*}$,

$$
\begin{aligned}
& x \in L \Longrightarrow M \text { accepts } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} . \\
& x \notin L \Longrightarrow M \text { rejects } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} .
\end{aligned}
$$

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that

Reducing the Error Rate in BPP

Definition: For $c>1$, a language L is in $\operatorname{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in\{0,1\}^{*}$,

$$
\begin{aligned}
& x \in L \Longrightarrow M \text { accepts } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} . \\
& x \notin L \Longrightarrow M \text { rejects } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} .
\end{aligned}
$$

Theorem: Let $L \in \mathrm{BPP}_{\frac{1}{2}++}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2(|x|)^{d}}$.

Reducing the Error Rate in BPP

Definition: For $c>1$, a language L is in $\operatorname{BPP}_{\frac{1}{2}+}$ if there exists a polytime PTM M s.t. $\forall x \in\{0,1\}^{*}$,

$$
\begin{aligned}
& x \in L \Longrightarrow M \text { accepts } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} . \\
& x \notin L \Longrightarrow M \text { rejects } x \text { with probability } \geq \frac{1}{2}+\frac{1}{(|x|)^{c}} .
\end{aligned}
$$

Theorem: Let $L \in \mathrm{BPP}_{\frac{1}{2}++}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2(|x|)^{d}}$.

Corollary: BPP $_{\frac{1}{2}+}=$ BPP.

Reducing the Error Rate in BPP

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.

Proof:

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sBPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.

Reducing the Error Rate in BPP

Theorem: Let $L \in \mathrm{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2(|x|)^{d}}$.
Proof: Let M be $L^{\prime} \mathrm{SPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.
We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{SPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.
We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be L^{\prime} s $_{B P P_{\frac{1}{2}+}}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.
We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

1) Runs M on x, k times.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sPPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.
We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{SPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$.
We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}++}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sPPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$. We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}++}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sPPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$. We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
$\forall i \in[k]$, let X_{i} be the random variable:

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}++}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sBPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$. We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2(|x|)^{d}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
$\forall i \in[k]$, let X_{i} be the random variable:

- $X_{i}=1$, if y_{i} is the right answer.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sPPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$. We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2^{(|x|)^{d}}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
$\forall i \in[k]$, let X_{i} be the random variable:

- $X_{i}=1$, if y_{i} is the right answer.
- $X_{i}=0$, otherwise.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sPPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$. We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2^{(|x|)^{d}}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.

Fix $k=8 n^{d+2 c}$.
$\forall i \in[k]$, let X_{i} be the random variable:

- $X_{i}=1$, if y_{i} is the right answer.
- $X_{i}=0$, otherwise.

Reducing the Error Rate in BPP

Theorem: Let $L \in \operatorname{BPP}_{\frac{1}{2}+}$. Then, for every constant $d>1$, there exists a polytime PTM that decides L and gives the right answer with probability at least $1-\frac{1}{2^{(|x|)^{d}}}$.
Proof: Let M be $L^{\prime} \mathrm{sPPP}_{\frac{1}{2}+}$ machine that gives right answer with probability $\geq \frac{1}{2}+\frac{1}{(|x|)^{c}}$. We will construct a PTM M^{\prime} that decides L with right answer's probability $\geq 1-\frac{1}{2^{(|x|)^{d}}}$.
M^{\prime} on input x :

1) Runs M on x, k times.
2) Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be the outputs of runs.
3) Outputs the majority of $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.

Fix $k=8 n^{d+2 c}$.
$\forall i \in[k]$, let X_{i} be the random variable:

- $X_{i}=1$, if y_{i} is the right answer.
- $X_{i}=0$, otherwise.

Reducing the Error Rate in BPP

Reducing the Error Rate in BPP

Reducing the Error Rate in BPP

$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer]

Reducing the Error Rate in BPP

$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]$

Reducing the Error Rate in BPP

$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

Reducing the Error Rate in BPP

Recall $\longrightarrow\left\{\begin{array}{l}\text { Chernoff's Bound: Let } X_{1}, X_{2}, \ldots, X_{k} \text { be independent random variables, where } \operatorname{Pr}\left[X_{i}=1\right] \text { is } p \text { and } \\ \operatorname{Pr}\left[X_{i}=0\right] \text { is } 1-p \text {. Then, for } \delta \in(0,1), \\ \operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}\end{array}\right.$
$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

$$
\leq \operatorname{Pr}\left[\left|p-\frac{\Sigma X_{i}}{k}\right|>\frac{1}{n^{c}}\right]
$$

Reducing the Error Rate in BPP

Recall $\longrightarrow\left\{\begin{array}{l}\text { Chernoff's Bound: Let } X_{1}, X_{2}, \ldots, X_{k} \text { be independent random variables, where } \operatorname{Pr}\left[X_{i}=1\right] \text { is } p \text { and } \\ \operatorname{Pr}\left[X_{i}=0\right] \text { is } 1-p \text {. Then, for } \delta \in(0,1), \\ \operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}\end{array}\right.$
$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[\left|p-\frac{\Sigma X_{i}}{k}\right|>\frac{1}{n^{c}}\right] \\
& \leq e^{-\frac{1}{4} \cdot\left(\frac{1}{n^{2 c}}\right) \cdot\left(\frac{1}{2}+\frac{1}{n^{c}}\right) \cdot\left(8 n^{d+2 c}\right)}
\end{aligned}
$$

Reducing the Error Rate in BPP

Recall $\longrightarrow\left\{\begin{array}{l}\text { Chernoff's Bound: Let } X_{1}, X_{2}, \ldots, X_{k} \text { be independent random variables, where } \operatorname{Pr}\left[X_{i}=1\right] \text { is } p \text { and } \\ \operatorname{Pr}\left[X_{i}=0\right] \text { is } 1-p \text {. Then, for } \delta \in(0,1), \\ \operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}\end{array}\right.$
$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[\left|p-\frac{\Sigma X_{i}}{k}\right|>\frac{1}{n^{c}}\right] \\
& \leq e^{-\frac{1}{4} \cdot\left(\frac{1}{n^{2 c}}\right) \cdot\left(\frac{1}{2}+\frac{1}{n^{c}}\right) \cdot\left(8 n^{d+2 c}\right)} \\
& \leq e^{-n^{d} \cdot\left(1+\frac{2}{n^{c}}\right)}
\end{aligned}
$$

Reducing the Error Rate in BPP

Recall $\longrightarrow\left\{\begin{array}{l}\text { Chernoff's Bound: Let } X_{1}, X_{2}, \ldots, X_{k} \text { be independent random variables, where } \operatorname{Pr}\left[X_{i}=1\right] \text { is } p \text { and } \\ \operatorname{Pr}\left[X_{i}=0\right] \text { is } 1-p \text {. Then, for } \delta \in(0,1), \\ \operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}\end{array}\right.$
$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[\left|p-\frac{\Sigma X_{i}}{k}\right|>\frac{1}{n^{c}}\right] \\
& \leq e^{-\frac{1}{4} \cdot\left(\frac{1}{n^{2 c}}\right) \cdot\left(\frac{1}{2}+\frac{1}{n^{c}}\right) \cdot\left(8 n^{d+2 c}\right)} \\
& \leq e^{-n^{d} \cdot\left(1+\frac{2}{n^{c}}\right)} \leq e^{-n^{d}}
\end{aligned}
$$

Reducing the Error Rate in BPP

Recall $\longrightarrow\left\{\begin{array}{l}\text { Chernoff's Bound: Let } X_{1}, X_{2}, \ldots, X_{k} \text { be independent random variables, where } \operatorname{Pr}\left[X_{i}=1\right] \text { is } p \text { and } \\ \operatorname{Pr}\left[X_{i}=0\right] \text { is } 1-p \text {. Then, for } \delta \in(0,1), \\ \operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}\end{array}\right.$
$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[\left|p-\frac{\Sigma X_{i}}{k}\right|>\frac{1}{n^{c}}\right] \\
& \leq e^{-\frac{1}{4} \cdot\left(\frac{1}{n^{2}}\right) \cdot\left(\frac{1}{2}+\frac{1}{n^{c}}\right) \cdot\left(8 n^{d+2 c}\right)} \\
& \leq e^{-n^{d} \cdot\left(1+\frac{2}{n^{c}}\right)} \leq e^{-n^{d}} \leq 2^{-n^{d}}
\end{aligned}
$$

Reducing the Error Rate in BPP

Recall $\longrightarrow\left\{\begin{array}{l}\text { Chernoff's Bound: Let } X_{1}, X_{2}, \ldots, X_{k} \text { be independent random variables, where } \operatorname{Pr}\left[X_{i}=1\right] \text { is } p \text { and } \\ \operatorname{Pr}\left[X_{i}=0\right] \text { is } 1-p \text {. Then, for } \delta \in(0,1), \\ \operatorname{Pr}\left[\left|\frac{\sum_{i \in[k]} X_{i}}{k}-p\right|>\delta\right]<e^{\frac{-\delta^{2} p k}{4}}\end{array}\right.$
$\operatorname{Pr}\left[M^{\prime}\right.$ gives the wrong answer $]=\operatorname{Pr}\left[\Sigma_{i \in[k]} X_{i}<k / 2\right]=\operatorname{Pr}\left[p-\frac{\Sigma X_{i}}{k}>p-\frac{1}{2}\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[\left|p-\frac{\Sigma X_{i}}{k}\right|>\frac{1}{n^{c}}\right] \\
& \leq e^{-\frac{1}{4} \cdot\left(\frac{1}{n^{2 c}}\right) \cdot\left(\frac{1}{2}+\frac{1}{n^{c}}\right) \cdot\left(8 n^{d+2 c}\right)} \\
& \leq e^{-n^{d} \cdot\left(1+\frac{2}{n^{c}}\right)} \leq e^{-n^{d}} \leq 2^{-n^{d}}
\end{aligned}
$$

