Lecture 36

PM in Bipartite Graphs, Error Reduction
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For a bipartite graph G = (V, E) with equal partitions of size n, let X be an n X n matrix of integer

variables whose (7, j)th entry X; ; is equal to variable x; ; it (i, /) € E, equal to 0 otherwise.

E le:
xample | | ) )

x;1 Xpp O 0

2 2
Xy 0 xpy O

X =
3 3 0 x5 0 X3y
4 4 X 0 Xz O

Observation: G has a perfect matching ift X has n x;; entries such that in every row and column

there is exactly one of the n entries.
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The determinant of an n X n matrix X is defined as:
det(X) = Z,eg (=1)"O I X, 0(i)

where §, is the set of all permutations of [n] and sgn(o) is the parity of the number of pairs (i, j)

in o such thati < j and but (1) > o()).

Observation: Previously defined X has n x;; entries such that in every row and column there is

exactly one of the n entries iff det(X) is a non-zero polynomial.

Corollary: G has a perfect matching itt de#(X) is a non-zero polynomial.
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Definition: For ¢ > 1, a language L is in BPP_, if there exists a polytime PTM M s.t. Vx € {0,1}%,

1 1
x € L = M accepts x with probability > — + .
2 (lx])°
1 |
x & L = M rejects x with probability > — .
2 (lx])e

Theorem: Let L € BPP, .. Then, for every constant d > 1, there exists a polytime PTM that

decides L and gives the right answer with probability at least 1 ST

Corollary: BPP,, = BPP.
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